Extensions 1→N→G→Q→1 with N=C7⋊D4 and Q=C23

Direct product G=N×Q with N=C7⋊D4 and Q=C23
dρLabelID
C23×C7⋊D4224C2^3xC7:D4448,1384

Semidirect products G=N:Q with N=C7⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C7⋊D41C23 = C22×D4×D7φ: C23/C22C2 ⊆ Out C7⋊D4112C7:D4:1C2^3448,1369
C7⋊D42C23 = C22×D42D7φ: C23/C22C2 ⊆ Out C7⋊D4224C7:D4:2C2^3448,1370
C7⋊D43C23 = C2×D46D14φ: C23/C22C2 ⊆ Out C7⋊D4112C7:D4:3C2^3448,1371
C7⋊D44C23 = C2×D7×C4○D4φ: C23/C22C2 ⊆ Out C7⋊D4112C7:D4:4C2^3448,1375
C7⋊D45C23 = C2×D48D14φ: C23/C22C2 ⊆ Out C7⋊D4112C7:D4:5C2^3448,1376
C7⋊D46C23 = D7×2+ 1+4φ: C23/C22C2 ⊆ Out C7⋊D4568+C7:D4:6C2^3448,1379
C7⋊D47C23 = C22×C4○D28φ: trivial image224C7:D4:7C2^3448,1368

Non-split extensions G=N.Q with N=C7⋊D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C7⋊D4.1C23 = C2×D4.10D14φ: C23/C22C2 ⊆ Out C7⋊D4224C7:D4.1C2^3448,1377
C7⋊D4.2C23 = C14.C25φ: C23/C22C2 ⊆ Out C7⋊D41124C7:D4.2C2^3448,1378
C7⋊D4.3C23 = D14.C24φ: C23/C22C2 ⊆ Out C7⋊D41128-C7:D4.3C2^3448,1380
C7⋊D4.4C23 = D7×2- 1+4φ: C23/C22C2 ⊆ Out C7⋊D41128-C7:D4.4C2^3448,1381
C7⋊D4.5C23 = D28.39C23φ: C23/C22C2 ⊆ Out C7⋊D41128+C7:D4.5C2^3448,1382
C7⋊D4.6C23 = C2×Q8.10D14φ: trivial image224C7:D4.6C2^3448,1374

׿
×
𝔽